Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Artículos

Vol. 15 (2024): enero-diciembre, 2024

Patterns of Spatial Distribution of Migration and Poverty in Mexican Municipalities: A Bayesian Spatial Analysis

DOI
https://doi.org/10.33679/rmi.v1i1.2941
Publicado
2024-09-30

Resumen

Two latent Gaussian models were used to measure the effects of poverty on the spatial distribution of municipal migration rates during the period 2015-2020. To this end, the net migration balance was estimated from the difference between the observed number of immigrants and emigrants in small geographic areas, with the purpose of testing the hypothesis that people in poverty remain immobile. The migration balance observed in poor municipalities is significantly lower than that observed in non-poor municipalities. The results showed that a one percentage point increase in municipal poverty would increase the municipal migration rate by 1.3 points. This suggests that municipalities metropolitan areas such as Mexico City, Monterrey, and Guadalajara, whose access to employment and/or housing is greater, have higher immigration rates than the national average.

Palabras clave

  • integrated nested Laplace approximations
  • net migration
  • Moran index
  • Mexico
  • inequality

Cómo citar

Núñez Medina, G. (2024). Patterns of Spatial Distribution of Migration and Poverty in Mexican Municipalities: A Bayesian Spatial Analysis. Migraciones Internacionales, 15. https://doi.org/10.33679/rmi.v1i1.2941

Citas

  1. Akaike, H. (1998). Information theory and an extension of the maximum likelihood principle. In E. Parzen, K. Tanabe, & G. Kitagawa (Eds.), Selected papers of hirotugu Akaike (pp. 199-213). Springer New York.
  2. Anselin, L. (1988). Spatial econometrics: Methods and models. Kluwer Academic Publishers.
  3. Anselin, L. (1995). Local indicators of spatial association-LISA. Geographical Analysis, 27(2), 93-115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
  4. Arango, J. (2000). Enfoques conceptuales y teóricos para explicar la migración. Revista Internacional de Ciencias Sociales, 165, 33-47. https://unesdoc.unesco.org/ark:/48223/pf0000123852_spa
  5. Arango, J. (2003). La explicación teórica de las migraciones: luz y sombra. Migración y Desarrollo, (1), 1-30. https://www.redalyc.org/pdf/660/66000102.pdf
  6. Basok, T., Bélanger, D., Wiesner, M. L. R., & Candiz, G. (2015). Rethinking transit migration: Precarity, mobility, and self-making in Mexico. Springer.
  7. Beale, C. L. (2004). Anatomy of nonmetro high poverty areas: Common in plight, distinctive in nature. Amber Waves, 2(5), 20-27. http://dx.doi.org/10.22004/ag.econ.131783
  8. Berube, A., & Kneebone, E. (2006, December). Two steps back: City and suburban poverty trends, 1999-2005. The Brookings Institution-Metropolitan Policy Program. https://www.brookings.edu/articles/two-steps-back-city-and-suburban-poverty-trends-1999-2005/
  9. Blangiardo, M., & Cameletti, M. (2015). Spatial and spatio-temporal Bayesian models with R-INLA. John Wiley & Sons.
  10. Bloomquist, L. E., Gringeri, C., Tomaskovic-Devey, D., & Truelove, C. (1993). Work structures and rural poverty. In Persistent Poverty in Rural America. Rural sociological society task force on persistent rural poverty (pp. 66-109). Westview Press.
  11. Cadwallader, M. (1992). Migration and residential mobility. University of Wisconsin Press.
  12. Canales, A. I. (2017). La migración internacional en los modelos neoclásicos. Una perspectiva crítica. Huellas de la Migración, 2(3), 11-36. https://huellasdelamigracion.uaemex.mx/article/view/4527
  13. Chasco, C. (2003). Econometría espacial aplicada a la predicción-extrapolación de datos microterritoriales [Doctoral dissertation, Universidad Autónoma de Madrid]. http://www.madrid.org/bvirtual/BVCM005618.pdf
  14. Clark, W. A. V. (1986). Human migration. Sage.
  15. Consejo Nacional de Evaluación de la Política de Desarrollo Social (CONEVAL). (2019). Metodología para la medición multidimensional de la pobreza en México (3rd ed.). https://www.coneval.org.mx/InformesPublicaciones/InformesPublicaciones/Documents/Metodologia-medicion-multidimensional-3er-edicion.pdf
  16. Cushing, B. (1999). Migration and persistent poverty in rural America. In K. Pandit, & S. D. Withers. Migration and restructuring in the United States (pp. 15-36). Rowman and Littlefield.
  17. Delaunay, D. (2007). Relaciones entre pobreza, migración y movilidad: dimensiones territorial y contextual. Notas de Población, (84), 87-130. https://repositorio.cepal.org/items/17c28a28-123f-4df6-966d-cea28589c248
  18. Durand, J. (2004). Ensayo teórico sobre la migración de retorno. El principio del rendimiento decreciente. Cuadernos Geográficos, 35(2), 103-116. https://revistaseug.ugr.es/index.php/cuadgeo/article/view/1784
  19. Fawcett, J. T. (1989). Networks, linkages, and migration systems. International Migration Review, 23(3), 671-680. https://doi.org/10.2307/2546434
  20. Fergany, N. (1990). The international migration process as a dynamic system. International population conference: Vol. 2 (pp. 7-32). International Union for the Scientific Study of Population.
  21. Fitchen, J. (1995). Spatial redistribution of poverty through migration of poor people to depressed rural communities. Rural Sociology, 60(2), 181-201. https://doi.org/10.1111/j.1549-0831.1995.tb00568.x
  22. Foulkes, M., & Newbold, K. B. (2008). Poverty catchments: Migration, residential mobility, and population turnover in impoverished rural Illinois communities. Rural Sociology, 73(3), 440-462. https://doi.org/10.1526/003601108785766525
  23. Getis, A., & Ord, J. K. (1992). The analysis of spatial association by use of distance statistics. Geographical Analysis, 24(3), 189-199. https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1538-4632.1992.tb00261.x
  24. Gómez-Rubio, V. (2020). Bayesian inference with INLA. CRC Press.
  25. Herrera Carassou, R. (2006). La perspectiva teórica en el estudio de las migraciones. Siglo XXI Editores.
  26. Instituto Nacional de Estadística y Geografía (INEGI). (2015). Intercensal Survey 2015. https://en.www.inegi.org.mx/programas/intercensal/2015/
  27. Instituto Nacional de Estadística y Geografía (INEGI). (2020). Census of Population and Housing 2020. https://en.www.inegi.org.mx/programas/ccpv/2020/
  28. Lichter, D. T., & Johnson, K. M. (2007). The changing spatial concentration of America’s rural poor population. Rural Sociology, 72(3), 331-358. https://scholars.unh.edu/cgi/viewcontent.cgi?article=1051&context=soc_facpub
  29. Martino, S., & Rue, H. (2010). Case studies in Bayesian computation using INLA. In P. Mantovan, & P. Secchi, Complex data modeling and computationally intensive statistical methods (pp. 99-114). Springer. https://link.springer.com/chapter/10.1007/978-88-470-1386-5_8
  30. Massey, D. S., Gross, A. B., & Shibuya, K. (1994). Migration, segregation, and the geographic concentration of poverty. American Sociological Review, 59(3), 425-445. https://doi.org/10.2307/2095942
  31. Massey, D., Arango, J., Hugo, G., Kouaouci, A., Pellegrino, A., & Taylor, J. E. (2008). Teorías de migración internacional: una revisión y aproximación. Revista de Derecho Constitucional Europeo-ReDCE, 5(10), 435-478.
  32. Molina Sánchez, L., & Oyarzun de la Iglesia, F. J. (2008). Movimientos migratorios internacionales: un análisis económico (Working Paper no. 02-13). Universidad Complutense de Madrid-Facultad de Ciencias Económicas y Empresariales.
  33. Moraga, P. (2019). Geospatial health data: Modeling and visualization with R-INLA and Shiny. Chapman and Hall; CRC Press.
  34. Nord, M. (1998). Poor people on the move: County to county migration and the spatial concentration of poverty. Journal of Regional Science, 38(2), 329-351. https://doi.org/10.1111/1467-9787.00095
  35. Nord, M., Luloff, A. E., & Jensen, L. (1995). Migration and the spatial concentration of poverty. Rural Sociology, 60(3), 399-415. https://doi.org/10.1111/j.1549-0831.1995.tb00580.x
  36. Ravenstein, E. G. (1889). The laws of migration. Royal Statistical Society, 52(2), 241-301. https://rss.onlinelibrary.wiley.com/doi/10.1111/j.2397-2335.1889.tb00043.x
  37. R Core Team. (2016). R: A Language and Environment for Statistical Computing [Software]. R Foundation for Statistical Computing.
  38. Romo, R., Chávez Galindo, A. M., & Villasana, D. (2021). Migración interna reciente de retorno en México. La Situación Demográfica de México, 3(3), 125-148. https://www.gob.mx/conapo/documentos/la-situacion-demografica-de-mexico-2021
  39. Rue, H., & Held, L. (2005). Gaussian Markov random fields: Theory and applications (1st ed.). Chapman & Hall.
  40. Rue, H., Martino, S., & Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society: Series B, 71(2), 319-392. https://doi.org/10.1111/j.1467-9868.2008.00700.x
  41. Schrödle, B., & Held, L. (2011). Spatio-temporal disease mapping using INLA. Environmetrics, 22(6), 725-734. https://doi.org/10.1002/env.1065
  42. Sobrino, J. (2014). Migración interna y tamaño de localidad en México. Estudios Demográficos y Urbanos, 29(3), 443-480. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0186-72102014000300443
  43. Spiegelhalter, D. J., Best, N. G., Carlin, B. R., & Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society London, Series B, 64(4), 583-616. https://doi.org/10.1111/1467-9868.00353
  44. Stevens, A. H. (1999). Climbing out of poverty, falling back in: Measuring persistence of poverty over multiple spells. Journal of Human Resources, 34(3), 557-588. https://doi.org/10.2307/146380